Compound Semiconductor Devices


Silicon nanocrystal.
Calculated valence electron density of a silicon nanocrystal. (Image courtesy of Zack Helms, Quantum Simulations Laboratory, North Carolina State University. Simulations completed using computational resources provided by the National Center for Supercomputing Applications. Image provided by the National Science Foundation Image Library.)

Course Features

  • Selected lecture notes
  • Projects and Examples

Course Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Technical Requirements

Microsoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

*Some translations represent previous versions of courses.



pesan sponsor

advert